Seed germination in a southern Australian temperate seagrass

نویسندگان

  • Erin Cumming
  • Jessie C. Jarvis
  • Craig D.H. Sherman
  • Paul H. York
  • Timothy M. Smith
چکیده

In a series of experiments, seeds from a temperate seagrass species, Zostera nigricaulis collected in Port Phillip Bay, Victoria, Australia were exposed to a range of salinities (20 PSU pulse/no pulse, 25 PSU, 30 PSU, 35 PSU), temperatures (13 °C, 17 °C, 22 °C), burial depths (0 cm, 1 cm, 2 cm) and site specific sediment characteristics (fine, medium, coarse) to quantify their impacts on germination rate and maximum overall germination. In southern Australia the seagrass Z. nigricaulis is a common subtidal species; however, little is known about the factors that affect seed germination which is a potential limiting factor in meadow resilience to natural and anthropogenic disturbances. Overall seed germination was low (<20%) with germination decreasing to <10% when seeds were placed in the sediment. When germination of Z. nigricaulis seeds was observed, it was enhanced (greater overall germination and shorter time to germination) when seeds were exposed to a 20 PSU pulse for 24 h, maintained at salinity of 25 PSU, temperatures <13 °C, in sediments with fine or medium grain sand and buried at a depth of <1 cm. These results indicate that germination of Z. nigricaulis seeds under in situ conditions may be seasonally limited by temperatures in southern Australia. Seed germination may be further restricted by salinity as freshwater pulses reaching 20 PSU are typically only observed in Port Phillip Bay following large scale rainfall events. As a result, these populations may be particularly susceptible to disturbance with only a seasonally limited capacity for recovery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linking Seed Photosynthesis and Evolution of the Australian and Mediterranean Seagrass Genus Posidonia

Recent findings have shown that photosynthesis in the skin of the seed of Posidonia oceanica enhances seedling growth. The seagrass genus Posidonia is found only in two distant parts of the world, the Mediterranean Sea and southern Australia. This fact led us to question whether the acquisition of this novel mechanism in the evolution of this seagrass was a pre-adaptation prior to geological is...

متن کامل

Salinity and temperature significantly influence seed germination, seedling establishment, and seedling growth of eelgrass Zostera marina L.

Globally, seagrass beds have been recognized as critical yet declining coastal habitats. To mitigate seagrass losses, seagrass restorations have been conducted in worldwide over the past two decades. Seed utilization is considered to be an important approach in seagrass restoration efforts. In this study, we investigated the effects of salinity and temperature on seed germination, seedling esta...

متن کامل

Global seagrass distribution and diversity: A bioregional model

Seagrasses, marine flowering plants, are widely distributed along temperate and tropical coastlines of the world. Seagrasses have key ecological roles in coastal ecosystems and can form extensive meadows supporting high biodiversity. The global species diversity of seagrasses is low (b60 species), but species can have ranges that extend for thousands of kilometers of coastline. Seagrass bioregi...

متن کامل

Seed Dispersal in a Marine Macrophyte: Implications for Colonization and Restoration

Seagrasses rely on both vegetative (rhizome elongation) and sexual (seeds) propagation for maintenance of existing beds and colonization of new areas. Yet mechanisms of seed dispersal and survival of seeds in new areas remain poorly described. We conducted seed dispersal experiments in the field and laboratory to better describe seed dispersal characteristics in one species, Zostera marina L. (...

متن کامل

Variability in the Carbon Storage of Seagrass Habitats and Its Implications for Global Estimates of Blue Carbon Ecosystem Service

The recent focus on carbon trading has intensified interest in 'Blue Carbon'-carbon sequestered by coastal vegetated ecosystems, particularly seagrasses. Most information on seagrass carbon storage is derived from studies of a single species, Posidonia oceanica, from the Mediterranean Sea. We surveyed 17 Australian seagrass habitats to assess the variability in their sedimentary organic carbon ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2017